A crown-group cnidarian from the Ediacaran of Charnwood Forest, UK – Nature Ecology & Evolution

  • Wilby, P. R., Carney, J. N. & Howe, M. P. A rich Ediacaran assemblage from eastern Avalonia: evidence of early widespread diversity in the deep ocean. Geology 39, 655–658 (2011).

    Article 

    Google Scholar 

  • Noble, S. et al. Age and global context of the Ediacaran fossils of Charnwood Forest, Leicestershire, UK. Geol. Soc. Am. Bull. 127, 250–265 (2015).

    CAS 
    Article 

    Google Scholar 

  • Han, J. et al. Olivooides-like tube aperture in early Cambrian carinachitids (Medusozoa, Cnidaria). J. Paleontol. 92, 3–13 (2018).

    Article 

    Google Scholar 

  • De Moraes Leme, J., Guimarães Simões, M., Carlos Marques, A. & Van Iten, H. Cladistic analysis of the suborder Conulariina Miller and Gurley, 1896 (Cnidaria, Scyphozoa; Vendian–Triassic). Palaeontology 51, 649–662 (2008).

    Article 

    Google Scholar 

  • Morris, S. C. & Menge, C. Carinachitids, hexangulaconulariids, and Punctatus: problematic metazoans from the Early Cambrian of South China. J. Paleontol. 66, 384–406 (1992).

    Article 

    Google Scholar 

  • Kouchinsky, A., Bengtson, S., Feng, W., Kutygin, R. & Val’kov, A. The Lower Cambrian fossil anabaritids: affinities, occurrences and systematics. J. Syst. Palaeontol. 7, 241–298 (2009).

    Article 

    Google Scholar 

  • Cai, Y., Xiao, S., Hua, H. & Yuan, X. New material of the biomineralizing tubular fossil Sinotubulites from the late Ediacaran Dengying Formation, South China. Precambrian Res. 261, 12–24 (2015).

    CAS 
    Article 

    Google Scholar 

  • Dong, X.-P. et al. Embryos, polyps and medusae of the Early Cambrian scyphozoan Olivooides. Proc. R. Soc. B 280, 20130071 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kenchington, C. G., Dunn, F. S. & Wilby, P. R. Modularity and overcompensatory growth in Ediacaran rangeomorphs demonstrate early adaptations for coping with environmental pressures. Curr. Biol. 28, 3330–3336 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gehling, J. G. Microbial mats in terminal Proterozoic siliciclastics; Ediacaran death masks. Palaios 14, 40–57 (1999).

    Article 

    Google Scholar 

  • Kenchington, C. & Wilby, P. R. Of Time and Taphonomy: Preservation in the Ediacaran (Geological Society of America, 2014).

  • Zapata, F. et al. Phylogenomic analyses support traditional relationships within Cnidaria. PLoS ONE 10, e0139068 (2015).

  • Duan, B. et al. The early Cambrian fossil embryo Pseudooides is a direct-developing cnidarian, not an early ecdysozoan. Proc. R. Soc. B 284, 20172188 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Selly, T. et al. A new cloudinid fossil assemblage from the terminal Ediacaran of Nevada, USA. J. Syst. Palaeontol. 18, 357–379 (2020).

    Article 

    Google Scholar 

  • Park, T.-Y. S. et al. Enduring evolutionary embellishment of cloudinids in the Cambrian. R. Soc. Open Sci. 8, 210829 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • dos Reis, M. et al. Uncertainty in the timing of origin of animals and the limits of precision in molecular timescales. Curr. Biol. 25, 2939–2950 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Park, T.-y. et al. A stem-group cnidarian described from the mid-Cambrian of China and its significance for cnidarian evolution. Nat. Commun. 2, 442 (2011).

  • Liu, A. G., Matthews, J. J., Menon, L. R., McIlroy, D. & Brasier, M. D. Haootia quadriformis n. gen., n. sp., interpreted as a muscular cnidarian impression from the Late Ediacaran period (approx. 560 Ma). Proc. R. Soc. B https://doi.org/10.1098/rspb.2014.1202 (2014).

  • Zhao, Y. et al. Cambrian sessile, suspension feeding stem-group ctenophores and evolution of the comb jelly body plan. Curr. Biol. 29, 1112–1125 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Miranda, L., Collins, A. & Marques, A. Is Haootia quadriformis related to extant Staurozoa (Cnidaria)? Evidence from the muscular system reconsidered. Proc. R. Soc. B 282, 20142396 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Liu, A. G., Matthews, J. J., Menon, L. R., McIlroy, D. & Brasier, M. D. The arrangement of possible muscle fibres in the Ediacaran taxon Haootia quadriformis. Proc. R. Soc. B 282, 20142949 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Pacheco, M. L. F. et al. Insights into the skeletonization, lifestyle, and affinity of the unusual Ediacaran fossil Corumbella. PLoS ONE 10, e0114219 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Walde, D. H.-G., Weber, B., Erdtmann, B.-D. & Steiner, M. Taphonomy of Corumbella werneri from the Ediacaran of Brazil: sinotubulitid tube or conulariid test? Alcheringa Australas. J. Palaeontol. 43, 335–350 (2019).

    Article 

    Google Scholar 

  • Morandini, A. Identification of coronate polyps from the Arctic Ocean: Nausithoe werneri Jarms, 1990 (Cnidaria, Scyphozoa, Coronatae), with notes on its biology. Steenstrupia 32, 69–77 (2010).

    Google Scholar 

  • Yang, B. et al. Ultrastructure of Ediacaran cloudinids suggests diverse taphonomic histories and affinities with non-biomineralized annelids. Sci. Rep. 10, 535 (2020).

  • Hua, H., Chen, Z., Yuan, X., Zhang, L. & Xiao, S. Skeletogenesis and asexual reproduction in the earliest biomineralizing animal Cloudina. Geology 33, 277–280 (2005).

    Article 

    Google Scholar 

  • Bright, M., Eichinger, I. & von Salvini-Plawen, L. The metatrochophore of a deep-sea hydrothermal vent vestimentiferan (Polychaeta: Siboglinidae). Org. Divers. Evol. 13, 163–188 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Rouse, G. W. Bias? What bias? The evolution of downstream larval‐feeding in animals. Zoologica Scr. 29, 213–236 (2000).

    Article 

    Google Scholar 

  • Vinn, O. & Zaton, M. Inconsistencies in proposed annelid affinities of early biomineralized organism Cloudina (Ediacaran): structural and ontogenetic evidences. Carnets Géol. 3, 39–47 (2012).

  • Shore, A., Wood, R., Curtis, A. & Bowyer, F. Multiple branching and attachment structures in cloudinomorphs, Nama Group, Namibia. Geology 48, 877–881 (2020).

    CAS 
    Article 

    Google Scholar 

  • Schiffbauer, J. D. et al. Discovery of bilaterian-type through-guts in cloudinomorphs from the terminal Ediacaran Period. Nat. Commun. 11, 205 (2020).

  • Hyman, L. H. Protozoa through Ctenophora (McGraw Hill, 1940).

  • Vinn, O. & Mutvei, H. Calcareous tubeworms of the Phanerozoic. Estonian J. Earth Sci. 58, 286–296 (2009).

    Article 

    Google Scholar 

  • Liu, Y. et al. Quadrapyrgites from the lower Cambrian of South China: growth pattern, post-embryonic development, and affinity. Chin. Sci. Bull. 59, 4086–4095 (2014).

    Article 

    Google Scholar 

  • Jerre, F. Anatomy and phylogenetic significance of Eoconularia loculata, a conulariid from the Silurian of Gotland. Lethaia 27, 97–109 (1994).

    Article 

    Google Scholar 

  • Simonetta, A. M. & Conway Morris, S. Early Evolution of Metazoa and the Significance of Problematic Taxa (Cambridge Univ. Press, 1991).

  • Hughes, N. C., Gunderson, G. O. & Weedon, M. J. Late Cambrian conulariids from Wisconsin and Minnesota. J. Paleontol. 74, 828–838 (2000).

    Article 

    Google Scholar 

  • Van Iten, H. et al. Origin and early diversification of the phylum Cnidaria Verrill: major developments in the analysis of the taxon’s Proterozoic-Cambrian history. Palaeontology 57, 677–690 (2014).

    Article 

    Google Scholar 

  • Chapman, D. & Werner, B. Structure of a solitary and a colonial species of Stephanoscyphus (Scyphozoa, Coronatae) with observations on periderm repair. Helgol. Meeresunters.23, 393–421 (1972).

    Article 

    Google Scholar 

  • Purcell, J. E. & Angel, D. L. Jellyfish Blooms: New Problems and Solutions Vol. 212 (Springer, 2015).

  • Rees, J. T. A pandeid hydrozoan, Amphinema sp., new and probably introduced to central California: life history, morphology, distribution, and systematics. Sci. Mar. 64, 165–172 (2000).

  • Mendoza-Becerril, M. A., Marian, J. E. A., Migotto, A. E. & Marques, A. C. Exoskeletons of Bougainvilliidae and other Hydroidolina (Cnidaria, Hydrozoa): structure and composition. PeerJ 5, e2964 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Mendoza-Becerril, M. A. et al. An evolutionary comparative analysis of the medusozoan (Cnidaria) exoskeleton. Zool. J. Linn. Soc. 178, 206–225 (2016).

    Article 

    Google Scholar 

  • Bayer, F. M., Boschma, H. & Harrington, H. J. Treatise on Invertebrate Paleontology, Part F: Coelenterata (Geological Society of America, 1956).

  • Daly, M., Rack, F. & Zook, R. Edwardsiella andrillae, a new species of sea anemone from Antarctic Ice. PLoS ONE 8, e83476 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Benayahu, Y., McFadden, C. S. & Shoham, E. Search for mesophotic octocorals (Cnidaria, Anthozoa) and their phylogeny: I. A new sclerite-free genus from Eilat, northern Red Sea. ZooKeys 676, 1–12 (2017).

    Article 

    Google Scholar 

  • Manuel, R. L. A redescription of Edwardsia beautempsi and E. timida (Actiniaria: Edwardsidae). Cah. Biol. Mar. 18, 483–497 (1977).

    Google Scholar 

  • López-González, P., Ocaña, O., García-Gómez, J. & Núñez, J. North-eastern Atlantic and Mediterranean species of Cornulariidae Dana, 1846 (Anthozoa: Stolonifera) with the description of a new genus. Zool. Meded. 69, 261–272 (1995).

    Google Scholar 

  • Kayal, E. et al. Phylogenomics provides a robust topology of the major cnidarian lineages and insights on the origins of key organismal traits. BMC Evol. Biol. 18, 68 (2018).

    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Benton, M. J. et al. Constraints on the timescale of animal evolutionary history. Palaeontol. Electron. 18, 1–106 (2015).

    Google Scholar 

  • Omori, M. & Vervoort, W. Observations on a living specimen of the giant hydroid Branchiocerianthus imperator. Zool. Meded. 60, 257–261 (1986).

    Google Scholar 

  • McMahon, S., Tarhan, L. G. & Briggs, D. E. G. Decay of the sea anemone Metridium (Actinaria): implications for the preservation of cnidarian polyps and other soft-bodied diploblast-grade animals. Palaios 32, 388–395 (2017).

    Article 

    Google Scholar 

  • Brocks, J. J. et al. The rise of algae in Cryogenian oceans and the emergence of animals. Nature 548, 578–581 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cohen, P. A. & Riedman, L. A. It’s a protist-eat-protist world: recalcitrance, predation, and evolution in the Tonian–Cryogenian ocean. Emerg. Top. Life Sci. 2, 173–180 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Darroch, S. A., Laflamme, M. & Clapham, M. E. Population structure of the oldest known macroscopic communities from Mistaken Point, Newfoundland. Paleobiology 39, 591–608 (2013).

    Article 

    Google Scholar 

  • Kenchington, C. G., Harris, S. J., Vixseboxse, P. B., Pickup, C. & Wilby, P. R. The Ediacaran fossils of Charnwood Forest: shining new light on a major biological revolution. Proc. Geol. Assoc. 129, 264–277 (2018).

    Article 

    Google Scholar 

  • Ou, Q. et al. Three Cambrian fossils assembled into an extinct body plan of cnidarian affinity. Proc. Natl Acad. Sci. USA 114, 8835–8840 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lloyd, G. T. Estimating morphological diversity and tempo with discrete character–taxon matrices: implementation, challenges, progress, and future directions. Biol. J. Linn. Soc. 118, 131–151 (2016).

    Article 

    Google Scholar 

  • Whelan, N. V. et al. Ctenophore relationships and their placement as the sister group to all other animals. Nat. Ecol. Evol. 1, 1737 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gower, J. C. A general coefficient of similarity and some of its properties. Biometrics 27, 857–871 (1971).

  • Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).

    Article 

    Google Scholar 

  • Clarke, K. R. Non‐parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18, 117–143 (1993).

    Article 

    Google Scholar 

  • Guillerme, T. dispRity: a modular R package for measuring disparity. Methods Ecol. Evol. 9, 1755–1763 (2018).

    Article 

    Google Scholar 

  • Guillerme, T. & Cooper, N. Time for a rethink: time sub‐sampling methods in disparity‐through‐time analyses. Palaeontology 61, 481–493 (2018).

    Article 

    Google Scholar 

  • Vinn, O., Kirsimäe, K., Parry, L. A. & Toom, U. A new Byronia species from the Late Ordovician of Estonia. Estonian J. Earth Sci. 65, 201 (2016).

    Article 

    Google Scholar 

  • Vinn, O. & Kirsimäe, K. Alleged cnidarian Sphenothallus in the Late Ordovician of Baltica, its mineral composition and microstructure. Acta Palaeontol. Pol. 60, 1001–1008 (2014).

    Google Scholar 

  • Guo, J. et al. A fourteen-faced hexangulaconulariid from the early Cambrian (stage 2) Yanjiahe Formation, South China. J. Paleontol. 94, 45–55 (2020).

    Article 

    Google Scholar 

  • Junyuan, C. & Qingqing, P. An Early Cambrian problematic organism Anabarites and its possible affinity. Acta Palaeontol. Sinica 44, 57–65 (2005).

    Google Scholar 

  • Van Iten, H., Muir, L. A., Botting, J. P., Zhang, Y. & Lin, J.-P. Conulariids and Sphenothallus (Cnidaria, Medusozoa) from the Tonggao Formation (Lower Ordovician, China). Bull. Geosci. 88, 713–722 (2013).

    Article 

    Google Scholar 

  • Cortijo, I., Mus, M. M., Jensen, S. & Palacios, T. A new species of Cloudina from the terminal Ediacaran of Spain. Precambrian Res. 176, 1–10 (2010).

    CAS 
    Article 

    Google Scholar 

  • Germs, G. J. New shelly fossils from Nama Group, south west Africa. Am. J. Sci. 272, 752–761 (1972).

    Article 

    Google Scholar 

  • Cai, Y., Cortijo, I., Schiffbauer, J. D. & Hua, H. Taxonomy of the late Ediacaran index fossil Cloudina and a new similar taxon from South China. Precambrian Res. 298, 146–156 (2017).

    CAS 
    Article 

    Google Scholar 

  • Wills, M. A. in Fossils, Phylogeny, and Form: An Analytical Approach (eds Adrain, J. M. et al.) 55–144 (Springer, 2001).

  • Laliberté, E. & Legendre, P. A distance‐based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Anderson, M. J. A new method for non‐parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).

    Google Scholar 

  • Harris, S. Reflectance Transformation Image of Cast GSM106352 Showing Ediacaran (Pre-Cambrian) Fossils from Charnwood Forest, UK (NERC EDS National Geoscience Data Centre, 2022); https://webapps.bgs.ac.uk/services/ngdc/accessions/index.html#item173231

  • #crowngroup #cnidarian #Ediacaran #Charnwood #Forest #Nature #Ecology #Evolution

    Leave a Comment

    Your email address will not be published.